снком. 5822

Gas chromatography of cyclopropane fatty acid methylesters prepared with methanolic boron trichloride and boron trifluoride^{*}

CHRISTIE¹ has suggested that the use of boron trichloride in methanol (BCl₃-CH₃OH) by BRIAN AND GARDNER²⁻⁴ for esterification of bacterial fatty acids may have resulted in unreliable gas chromatographic (GC) data. MINNIKIN AND POLGAR⁵ showed that methanolic boron trifluoride (BF₃-CH₃OH) reacted with disubstituted cyclopropanes to give methoxyesters and the corresponding olefins. The possibility that a similar and unnoticed side-reaction may have occurred when BCl₃-CH₃OH was used to esterify cyclopropane fatty acids of bacterial origin^{3,4} was implied¹.

 BF_3 has been shown to be superior to BCl_3 as a catalyst for fatty acid transesterification⁶. Detailed studies using BF_3 or BCl_3 in CH_3OH for esterification⁶⁻⁸ did not include lipids containing cyclopropane fatty acids. A large number of papers have been published in which BF_3 or BCl_3 was used to catalyze the reaction of CH_3OH with bacterial fatty acids. Few authors who used BF_3 or BCl_3 in CH_3OH have indicated that another procedure was employed to check recovery of cyclopropane acids from bacterial lipids^{4,9}.

The purpose of this investigation was to determine the reliability of GC data following use of commercially available BF_3 -CH₃OH and BCl_3 -CH₃OH in the esterification of bacterial fatty acids containing cyclopropane rings.

Experimental

Esterification of fatty acid standards. A standard solution was prepared containing I mg/ml each of *cis*-9,10-methylene octadecanoic (cyc C_{10}) acid (Supelco, Inc., Bellefonte, Pa.) and heptadecanoic (C_{17}) acid (Applied Science Laboratories, State College, Pa.) in chloroform (CHCl₃).

I-ml aliquots were transferred to 15×150 mm screw-cap tubes and CHCl₃ was evaporated with a stream of N₂ (30°). 2 ml of 14 % BF₃ in CH₃OH (w/v) or 10 % BCl₃ in CH₃OH (w/v), both from Applied Science Laboratories, were added and the open tube placed in boiling water for 2 min (ref. 7). The tube was cooled and the contents transferred to a 30-ml separatory funnel. The tube was washed with 4 ml of CHCl₃, the CHCl₃ plus I ml of water were added to the separatory funnel and the contents shaken and allowed to separate. The CHCl₃ phase containing methylesters was evaporated with N₂ in a screw-cap tube.

The fatty acid standards were also esterified in an open tube for $0.5 \text{ min} (100^\circ)$, and for 5 min (100°) while tightly closed by a teflon-lined screw-cap.

Gas chromatography of fatty acid methylesters. Dried methylesters were dissolved in I ml of CHCl₃ and I μ l was injected into an Aerograph (Varian Associates, Palo Alto, Calif.; Model 204-IC) gas chromatograph with flame ionization detectors. Columns (5 ft. × I/8 in.) containing 15% diethylene glycol succinate polyester on Chromosorb W (60-80 mesh) were operated at 180°. Detector and injector temperatures were 220° and the N₂ flow was 25 ml/min. Range was 10⁻¹⁰ and attenua-

^{*} This work was supported by Faculty Research Funds of North Texas State University and by Robert A. Welch Foundation, Grant B-268.

NOTES

tion was 8. Areas of peaks were calculated by multiplication of peak height by peak width at 1/2 height.

Esterification of bacterial fatty acids. Escherichia coli (ATCC 11775) was incubated for 16 h at 40° in Trypticase Soy Broth (BBL). Higher incubation temperature is known to favor cyclopropane fatty acid production¹⁰. Lipids were extracted with CHCl₃-CH₃OH (2:1) (ref. 11). A solution containing 1 mg/ml C₁₇ and 1.2 mg/ml *E. coli* lipid in CHCl₃ was esterified with BCl₃-CH₃OH and BF₃-CH₃OH by the method of METCALFE, SCHMITZ, AND PELKA⁸. Fatty acids were identified by hydrogenation, bromination³ and by comparison with authentic standards. Cyclopropane methylesters (*cis*-9,10-methylene hexadecanoate, cyc C₁₇, and *cis*-11,12-methylene octadecanoate, cyc C₁₉) were synthesized from palmitoleate and *cis*-vaccenate using a simplified zinc-copper couple¹² and the SIMMONS-SMITH reaction¹³.

Results and discussion

Results of BF_3 - CH_3OH and BCl_3 - CH_3OH were compared with the reaction of 2 ml of freshly distilled diazomethane at 0° for 30 min (Table I). Diazomethane gave quantitative recovery of cyc C_{19} (99-101%). Recovery of cyc C_{19} (retention time relative to $C_{17} = 2.03$) using BCl_3 - CH_3OH at 100° for 2 min (open tube) or 5 min (closed tube) was similar to that obtained with diazomethane (93-100%). BF_3 - CH_3OH gave poor recovery of cyc C_{19} (10-50%) depending on conditions of the reaction (see Table I). Similar results were obtained with a 10% solution of BF_3 in CH_3OH prepared from a BF_3 -ether complex, $BF_3 \cdot O(C_2H_5)_2$ (Eastman Chemical Co.).

TABLE I

GC RESULTS OF FATTY ACID METHYL ESTERS FOLLOWING VARIOUS ESTERIFICATION METHODS

Fatty acids: cis-9,10-methylene octadecanoic (cyc C₁₀) acid and heptadecanoic (C₁₇) acid (internal standard); esterification: 1 mg of each acid; results (range of 3 determinations); peak areas for fatty acid methyl esters relative to C₁₇ taken as 1.00.

Esterification method	Relative peaks areas	
	cyc C ₁₉	Other esters
Diazomethane, 30 min, 0°	0.99-1.01	
Open tube, 0.5 min, 100° BF3–CH3OH	0.45-0.59	0.14-0.15
Open tube, 2 min, 100° BCl _a -CH _a OH	0.93-1.00	
BF ₃ -CH ₃ OH	0.12-0.13	0.31-0.32
Closed tube, 5 min, 100°		
BCl ₃ -CH ₃ OH BF ₃ -CH ₃ OH	0.96–0.98 0.10–0.11	0.46-0.50

Five additional peaks (retention times relative to $C_{17} = 1.40$, 1.64, 1.83, 3.12 and 4.23) were obtained when BF_3 -CH₃OH was used (Table I).

Results of BCl_3-CH_3OH for esterification of *E. coli* fatty acids (Fig. 1) indicated that cyc C_{17} comprised 29% and cyc C_{19} 16% of the total acids. Chromatograms obtained, following use of BF_3-CH_3OH (Fig. 1), revealed considerable loss of cyclopropane esters as well as additional small peaks. Therefore, BF_3-CH_3OH appears

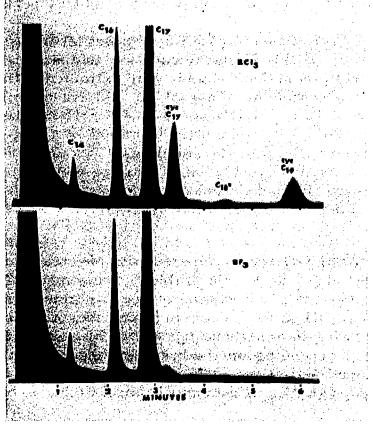


Fig. 1. Authentic gas chromatograms of methylesters of *Escherichia coli* fatty acids with C_{17} internal standard (areas under the peaks are darkened). Esters were prepared⁸ using BCl₃-CH₃OH (upper) and BF_a-CH_aOH (lower).

to be an undesirable esterification reagent for fatty acid mixtures containing cyclopropanes. BCl_a-CH_aOH on the other hand, is suitable for this purpose and appears to quantitatively esterify cyclopropane fatty acids which are prevalent in the lipids of many bacterial species.

Department of Biological Sciences, Department of Chemistry, North Texas State University, Denton, Texas 76203 (U.S.A.)

BUFORD L. BRIAN R. W. GRACY VERNON E. SCHOLES

- I W. W. CHRISTIE, Top. Lipid Chem., I (1970) I.
- 2 B. L. BRIAN AND E. W. GARDNER, Appl. Microbiol., 14 (1967) 1499.
- 3 B. L. BRIAN AND E. W. GARDNER, Appl. Microbiol., 16 (1968) 549.
- 4 B. L. BRIAN AND E. W. GARDNER, J. Bacteriol., 96 (1968) 2181.
- D. E. MINNIKIN AND N. POLGAR, Chem. Commun., (1967) 312. 5
- 6 W. R. MORRISON AND L. M. SMITH, J. Lipid Res., 4 (1964) 600.
- L. D. METCALFE AND A. A. SCHMITZ, Anal. Chem., 33 (1961) 363. 7
- 8 L. D. METCALFE, A. A. SCHMITZ AND J. R. PELKA, Anal. Chem., 38 (1966) 514.
- 9 H. GOLDFINE AND C. PANOS, J. Lipid Res., 12 (1971) 214. 10 A. G. MARR AND J. L. INGRAHAM, J. Bacteriol., 84 (1962) 1260.
- J. FOLCH, M. LEES AND G. H. SLOANE-STANLEY, J. Biol. Chem., 226 (1957) 497. TT
- 12 R. S. SHANK AND H. SCHECTER, J. Org. Chem., 24 (1959) 1825. 13 H. E. SIMMONS AND R. D. SMITH, J. Amer. Chem. Soc., 81 (1959) 4256.

Received October 25th, 1971

J. Chromatogr., 66 (1972) 138-140